Black Friday Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: clap70

Professional-Machine-Learning-Engineer Google Professional Machine Learning Engineer Questions and Answers

Questions 4

You are building a MLOps platform to automate your company's ML experiments and model retraining. You need to organize the artifacts for dozens of pipelines How should you store the pipelines' artifacts'?

Options:

A.

Store parameters in Cloud SQL and store the models' source code and binaries in GitHub

B.

Store parameters in Cloud SQL store the models' source code in GitHub, and store the models' binaries in Cloud Storage.

C.

Store parameters in Vertex ML Metadata store the models' source code in GitHub and store the models' binaries in Cloud Storage.

D.

Store parameters in Vertex ML Metadata and store the models source code and binaries in GitHub.

Buy Now
Questions 5

Your team has a model deployed to a Vertex Al endpoint You have created a Vertex Al pipeline that automates the model training process and is triggered by a Cloud Function. You need to prioritize keeping the model up-to-date, but also minimize retraining costs. How should you configure retraining'?

Options:

A.

Configure Pub/Sub to call the Cloud Function when a sufficient amount of new data becomes available.

B.

Configure a Cloud Scheduler job that calls the Cloud Function at a predetermined frequency that fits your team's budget.

C.

Enable model monitoring on the Vertex Al endpoint Configure Pub/Sub to call the Cloud Function when anomalies are detected.

D.

Enable model monitoring on the Vertex Al endpoint Configure Pub/Sub to call the Cloud Function when feature drift is detected.

Buy Now
Questions 6

You work for a bank You have been asked to develop an ML model that will support loan application decisions. You need to determine which Vertex Al services to include in the workflow You want to track the model's training parameters and the metrics per training epoch. You plan to compare the performance of each version of the model to determine the best model based on your chosen metrics. Which Vertex Al services should you use?

Options:

A.

Vertex ML Metadata Vertex Al Feature Store, and Vertex Al Vizier

B.

Vertex Al Pipelines. Vertex Al Experiments, and Vertex Al Vizier

C.

Vertex ML Metadata Vertex Al Experiments, and Vertex Al TensorBoard

D.

Vertex Al Pipelines. Vertex Al Feature Store, and Vertex Al TensorBoard

Buy Now
Questions 7

You are implementing a batch inference ML pipeline in Google Cloud. The model was developed using TensorFlow and is stored in SavedModel format in Cloud Storage You need to apply the model to a historical dataset containing 10 TB of data that is stored in a BigQuery table How should you perform the inference?

Options:

A.

Export the historical data to Cloud Storage in Avro format. Configure a Vertex Al batch prediction job to generate predictions for the exported data.

B.

Import the TensorFlow model by using the create model statement in BigQuery ML Apply the historical data to the TensorFlow model.

C.

Export the historical data to Cloud Storage in CSV format Configure a Vertex Al batch prediction job to generate predictions for the exported data.

D.

Configure a Vertex Al batch prediction job to apply the model to the historical data in BigQuery

Buy Now
Questions 8

You work for a global footwear retailer and need to predict when an item will be out of stock based on historical inventory data. Customer behavior is highly dynamic since footwear demand is influenced by many different factors. You want to serve models that are trained on all available data, but track your performance on specific subsets of data before pushing to production. What is the most streamlined and reliable way to perform this validation?

Options:

A.

Use the TFX ModelValidator tools to specify performance metrics for production readiness

B.

Use k-fold cross-validation as a validation strategy to ensure that your model is ready for production.

C.

Use the last relevant week of data as a validation set to ensure that your model is performing accurately on current data

D.

Use the entire dataset and treat the area under the receiver operating characteristics curve (AUC ROC) as the main metric.

Buy Now
Questions 9

You work for a company that sells corporate electronic products to thousands of businesses worldwide. Your company stores historical customer data in BigQuery. You need to build a model that predicts customer lifetime value over the next three years. You want to use the simplest approach to build the model and you want to have access to visualization tools. What should you do?

Options:

A.

Create a Vertex Al Workbench notebook to perform exploratory data analysis. Use IPython magics to create a new BigQuery table with input features Use the BigQuery console to run the create model statement Validate the results by using the ml. evaluate and ml. predict statements.

B.

Run the create model statement from the BigQuery console to create an AutoML model Validate the results by using the ml. evaluate and ml. predict statements.

C.

Create a Vertex Al Workbench notebook to perform exploratory data analysis and create input features Save the features as a CSV file in Cloud Storage Import the CSV file as a new BigQuery table Use the BigQuery console to run the create model statement Validate the results by using the ml. evaluate and ml. predict statements.

D.

Create a Vertex Al Workbench notebook to perform exploratory data analysis Use IPython magics to create a new BigQuery table with input features, create the model and validate the results by using the create model, ml. evaluates, and ml. predict statements.

Buy Now
Questions 10

You need to develop a custom TensorRow model that will be used for online predictions. The training data is stored in BigQuery. You need to apply instance-level data transformations to the data for model training and serving. You want to use the same preprocessing routine during model training and serving. How should you configure the preprocessing routine?

Options:

A.

Create a BigQuery script to preprocess the data, and write the result to another BigQuery table.

B.

Create a pipeline in Vertex Al Pipelines to read the data from BigQuery and preprocess it using a custom preprocessing component.

C.

Create a preprocessing function that reads and transforms the data from BigQuery Create a Vertex Al custom prediction routine that calls the preprocessing function at serving time.

D.

Create an Apache Beam pipeline to read the data from BigQuery and preprocess it by using TensorFlow Transform and Dataflow.

Buy Now
Questions 11

You are developing a process for training and running your custom model in production. You need to be able to show lineage for your model and predictions. What should you do?

Options:

A.

1 Create a Vertex Al managed dataset

2 Use a Vertex Ai training pipeline to train your model

3 Generate batch predictions in Vertex Al

B.

1 Use a Vertex Al Pipelines custom training job component to train your model

2. Generate predictions by using a Vertex Al Pipelines model batch predict component

C.

1 Upload your dataset to BigQuery

2. Use a Vertex Al custom training job to train your model

3 Generate predictions by using Vertex Al SDK custom prediction routines

D.

1 Use Vertex Al Experiments to train your model.

2 Register your model in Vertex Al Model Registry

3. Generate batch predictions in Vertex Al

Buy Now
Questions 12

You built a deep learning-based image classification model by using on-premises data. You want to use Vertex Al to deploy the model to production Due to security concerns you cannot move your data to the cloud. You are aware that the input data distribution might change over time You need to detect model performance changes in production. What should you do?

Options:

A.

Use Vertex Explainable Al for model explainability Configure feature-based explanations.

B.

Use Vertex Explainable Al for model explainability Configure example-based explanations.

C.

Create a Vertex Al Model Monitoring job. Enable training-serving skew detection for your model.

D.

Create a Vertex Al Model Monitoring job. Enable feature attribution skew and dnft detection for your model.

Buy Now
Questions 13

You work for a semiconductor manufacturing company. You need to create a real-time application that automates the quality control process High-definition images of each semiconductor are taken at the end of the assembly line in real time. The photos are uploaded to a Cloud Storage bucket along with tabular data that includes each semiconductor's batch number serial number dimensions, and weight You need to configure model training and serving while maximizing model accuracy. What should you do?

Options:

A.

Use Vertex Al Data Labeling Service to label the images and train an AutoML image classification model.

Deploy the model and configure Pub/Sub to publish a message when an image is categorized into the failing class.

B.

Use Vertex Al Data Labeling Service to label the images and train an AutoML image classification model. Schedule a daily batch prediction job that publishes a Pub/Sub message when the job completes.

C.

Convert the images into an embedding representation Import this data into BigQuery, and train a BigQuery. ML K-means clustenng model with two clusters Deploy the model and configure Pub/Sub to publish a message when a semiconductor's data is categorized into the failing cluster.

D.

Import the tabular data into BigQuery use Vertex Al Data Labeling Service to label the data and train an AutoML tabular classification model Deploy the model and configure Pub/Sub to publish a message when a semiconductor's data is categorized into the failing class.

Buy Now
Questions 14

You are working on a Neural Network-based project. The dataset provided to you has columns with different ranges. While preparing the data for model training, you discover that gradient optimization is having difficulty moving weights to a good solution. What should you do?

Options:

A.

Use feature construction to combine the strongest features.

B.

Use the representation transformation (normalization) technique.

C.

Improve the data cleaning step by removing features with missing values.

D.

Change the partitioning step to reduce the dimension of the test set and have a larger training set.

Buy Now
Questions 15

You recently developed a wide and deep model in TensorFlow. You generated training datasets using a SQL script that preprocessed raw data in BigQuery by performing instance-level transformations of the data. You need to create a training pipeline to retrain the model on a weekly basis. The trained model will be used to generate daily recommendations. You want to minimize model development and training time. How should you develop the training pipeline?

Options:

A.

Use the Kubeflow Pipelines SDK to implement the pipeline Use the BigQueryJobop component to run the preprocessing script and the customTrainingJobop component to launch a Vertex Al training job.

B.

Use the Kubeflow Pipelines SDK to implement the pipeline. Use the dataflowpythonjobopcomponent to preprocess the data and the customTraining JobOp component to launch a Vertex Al training job.

C.

Use the TensorFlow Extended SDK to implement the pipeline Use the Examplegen component with the BigQuery executor to ingest the data the Transform component to preprocess the data, and the Trainer component to launch a Vertex Al training job.

D.

Use the TensorFlow Extended SDK to implement the pipeline Implement the preprocessing steps as part of the input_fn of the model Use the ExampleGen component with the BigQuery executor to ingest the data and the Trainer component to launch a Vertex Al training job.

Buy Now
Questions 16

You developed a custom model by using Vertex Al to predict your application's user churn rate You are using Vertex Al Model Monitoring for skew detection The training data stored in BigQuery contains two sets of features - demographic and behavioral You later discover that two separate models trained on each set perform better than the original model

You need to configure a new model mentioning pipeline that splits traffic among the two models You want to use the same prediction-sampling-rate and monitoring-frequency for each model You also want to minimize management effort What should you do?

Options:

A.

Keep the training dataset as is Deploy the models to two separate endpoints and submit two Vertex Al Model Monitoring jobs with appropriately selected feature-thresholds parameters

B.

Keep the training dataset as is Deploy both models to the same endpoint and submit a Vertex Al Model Monitoring job with a monitoring-config-from parameter that accounts for the model IDs and feature selections

C.

Separate the training dataset into two tables based on demographic and behavioral features Deploy the models to two separate endpoints, and submit two Vertex Al Model Monitoring jobs

D.

Separate the training dataset into two tables based on demographic and behavioral features. Deploy both models to the same endpoint and submit a Vertex Al Model Monitoring job with a monitoring-config-from parameter that accounts for the model IDs and training datasets

Buy Now
Questions 17

You work for a retailer that sells clothes to customers around the world. You have been tasked with ensuring that ML models are built in a secure manner. Specifically, you need to protect sensitive customer data that might be used in the models. You have identified four fields containing sensitive data that are being used by your data science team: AGE, IS_EXISTING_CUSTOMER, LATITUDE_LONGITUDE, and SHIRT_SIZE. What should you do with the data before it is made available to the data science team for training purposes?

Options:

A.

Tokenize all of the fields using hashed dummy values to replace the real values.

B.

Use principal component analysis (PCA) to reduce the four sensitive fields to one PCA vector.

C.

Coarsen the data by putting AGE into quantiles and rounding LATITUDE_LONGTTUDE into single precision. The other two fields are already as coarse as possible.

D.

Remove all sensitive data fields, and ask the data science team to build their models using non-sensitive data.

Buy Now
Questions 18

You work for a bank with strict data governance requirements. You recently implemented a custom model to detect fraudulent transactions You want your training code to download internal data by using an API endpoint hosted in your projects network You need the data to be accessed in the most secure way, while mitigating the risk of data exfiltration. What should you do?

Options:

A.

Enable VPC Service Controls for peering’s, and add Vertex Al to a service perimeter

B.

Create a Cloud Run endpoint as a proxy to the data Use Identity and Access Management (1AM)

authentication to secure access to the endpoint from the training job.

C.

Configure VPC Peering with Vertex Al and specify the network of the training job

D.

Download the data to a Cloud Storage bucket before calling the training job

Buy Now
Questions 19

You work for the AI team of an automobile company, and you are developing a visual defect detection model using TensorFlow and Keras. To improve your model performance, you want to incorporate some image augmentation functions such as translation, cropping, and contrast tweaking. You randomly apply these functions to each training batch. You want to optimize your data processing pipeline for run time and compute resources utilization. What should you do?

Options:

A.

Embed the augmentation functions dynamically in the tf.Data pipeline.

B.

Embed the augmentation functions dynamically as part of Keras generators.

C.

Use Dataflow to create all possible augmentations, and store them as TFRecords.

D.

Use Dataflow to create the augmentations dynamically per training run, and stage them as TFRecords.

Buy Now
Questions 20

You work at a subscription-based company. You have trained an ensemble of trees and neural networks to predict customer churn, which is the likelihood that customers will not renew their yearly subscription. The average prediction is a 15% churn rate, but for a particular customer the model predicts that they are 70% likely to churn. The customer has a product usage history of 30%, is located in New York City, and became a customer in 1997. You need to explain the difference between the actual prediction, a 70% churn rate, and the average prediction. You want to use Vertex Explainable AI. What should you do?

Options:

A.

Train local surrogate models to explain individual predictions.

B.

Configure sampled Shapley explanations on Vertex Explainable AI.

C.

Configure integrated gradients explanations on Vertex Explainable AI.

D.

Measure the effect of each feature as the weight of the feature multiplied by the feature value.

Buy Now
Questions 21

You are designing an architecture with a serverless ML system to enrich customer support tickets with informative metadata before they are routed to a support agent. You need a set of models to predict ticket priority, predict ticket resolution time, and perform sentiment analysis to help agents make strategic decisions when they process support requests. Tickets are not expected to have any domain-specific terms or jargon.

The proposed architecture has the following flow:

Which endpoints should the Enrichment Cloud Functions call?

Options:

A.

1 = Vertex Al. 2 = Vertex Al. 3 = AutoML Natural Language

B.

1 = Vertex Al. 2 = Vertex Al. 3 = Cloud Natural Language API

C.

1 = Vertex Al. 2 = Vertex Al. 3 = AutoML Vision

D.

1 = Cloud Natural Language API. 2 = Vertex Al, 3 = Cloud Vision API

Buy Now
Questions 22

You are developing an ML model to identify your company s products in images. You have access to over one million images in a Cloud Storage bucket. You plan to experiment with different TensorFlow models by using Vertex Al Training You need to read images at scale during training while minimizing data I/O bottlenecks What should you do?

Options:

A.

Load the images directly into the Vertex Al compute nodes by using Cloud Storage FUSE Read the images by using the tf .data.Dataset.from_tensor_slices function.

B.

Create a Vertex Al managed dataset from your image data Access the aip_training_data_uri

environment variable to read the images by using the tf. data. Dataset. Iist_flies function.

C.

Convert the images to TFRecords and store them in a Cloud Storage bucket Read the TFRecords by using the tf. ciata.TFRecordDataset function.

D.

Store the URLs of the images in a CSV file Read the file by using the tf.data.experomental.CsvDataset function.

Buy Now
Questions 23

You work for a delivery company. You need to design a system that stores and manages features such as parcels delivered and truck locations over time. The system must retrieve the features with low latency and feed those features into a model for online prediction. The data science team will retrieve historical data at a specific point in time for model training. You want to store the features with minimal effort. What should you do?

Options:

A.

Store features in Bigtable as key/value data.

B.

Store features in Vertex Al Feature Store.

C.

Store features as a Vertex Al dataset and use those features to tram the models hosted in Vertex Al endpoints.

D.

Store features in BigQuery timestamp partitioned tables, and use the BigQuery Storage Read API to serve the features.

Buy Now
Questions 24

You work for an international manufacturing organization that ships scientific products all over the world Instruction manuals for these products need to be translated to 15 different languages Your organization's leadership team wants to start using machine learning to reduce the cost of manual human translations and increase translation speed. You need to implement a scalable solution that maximizes accuracy and minimizes operational overhead. You also want to include a process to evaluate and fix incorrect translations. What should you do?

Options:

A.

Create a workflow using Cloud Function Triggers Configure a Cloud Function that is triggered when documents are uploaded to an input Cloud Storage bucket Configure another Cloud Function that translates the documents using the Cloud Translation API and saves the translations to an output Cloud Storage bucket Use human reviewers to evaluate the incorrect translations.

B.

Create a Vertex Al pipeline that processes the documents1 launches an AutoML Translation training job evaluates the translations, and deploys the model to a Vertex Al endpoint with autoscaling and model monitoring When there is a predetermined skew between training and live data re-trigger the pipeline with the latest data.

C.

Use AutoML Translation to tram a model Configure a Translation Hub project and use the trained model to translate the documents Use human reviewers to evaluate the incorrect translations

D.

Use Vertex Al custom training jobs to fine-tune a state-of-the-art open source pretrained model with your data Deploy the model to a Vertex Al endpoint with autoscaling and model monitoring When there is a predetermined skew between the training and live data, configure a trigger to run another training job with the latest data.

Buy Now
Questions 25

You work for a gaming company that develops massively multiplayer online (MMO) games. You built a TensorFlow model that predicts whether players will make in-app purchases of more than $10 in the next two weeks. The model’s predictions will be used to adapt each user’s game experience. User data is stored in BigQuery. How should you serve your model while optimizing cost, user experience, and ease of management?

Options:

A.

Import the model into BigQuery ML. Make predictions using batch reading data from BigQuery, and push the data to Cloud SQL

B.

Deploy the model to Vertex AI Prediction. Make predictions using batch reading data from Cloud Bigtable, and push the data to Cloud SQL.

C.

Embed the model in the mobile application. Make predictions after every in-app purchase event is published in Pub/Sub, and push the data to Cloud SQL.

D.

Embed the model in the streaming Dataflow pipeline. Make predictions after every in-app purchase event is published in Pub/Sub, and push the data to Cloud SQL.

Buy Now
Questions 26

You work for a large hotel chain and have been asked to assist the marketing team in gathering predictions for a targeted marketing strategy. You need to make predictions about user lifetime value (LTV) over the next 30 days so that marketing can be adjusted accordingly. The customer dataset is in BigQuery, and you are preparing the tabular data for training with AutoML Tables. This data has a time signal that is spread across multiple columns. How should you ensure that AutoML fits the best model to your data?

Options:

A.

Manually combine all columns that contain a time signal into an array Allow AutoML to interpret this array appropriately

Choose an automatic data split across the training, validation, and testing sets

B.

Submit the data for training without performing any manual transformations Allow AutoML to handle the appropriate

transformations Choose an automatic data split across the training, validation, and testing sets

C.

Submit the data for training without performing any manual transformations, and indicate an appropriate column as the Time column Allow AutoML to split your data based on the time signal provided, and reserve the more recent data for the validation and testing sets

D.

Submit the data for training without performing any manual transformations Use the columns that have a time signal to manually split your data Ensure that the data in your validation set is from 30 days after the data in your training set and that the data in your testing set is from 30 days after your validation set

Buy Now
Questions 27

You work for a magazine publisher and have been tasked with predicting whether customers will cancel their annual subscription. In your exploratory data analysis, you find that 90% of individuals renew their subscription every year, and only 10% of individuals cancel their subscription. After training a NN Classifier, your model predicts those who cancel their subscription with 99% accuracy and predicts those who renew their subscription with 82% accuracy. How should you interpret these results?

Options:

A.

This is not a good result because the model should have a higher accuracy for those who renew their subscription than for those who cancel their subscription.

B.

This is not a good result because the model is performing worse than predicting that people will always renew their subscription.

C.

This is a good result because predicting those who cancel their subscription is more difficult, since there is less data for this group.

D.

This is a good result because the accuracy across both groups is greater than 80%.

Buy Now
Questions 28

You are profiling the performance of your TensorFlow model training time and notice a performance issue caused by inefficiencies in the input data pipeline for a single 5 terabyte CSV file dataset on Cloud Storage. You need to optimize the input pipeline performance. Which action should you try first to increase the efficiency of your pipeline?

Options:

A.

Preprocess the input CSV file into a TFRecord file.

B.

Randomly select a 10 gigabyte subset of the data to train your model.

C.

Split into multiple CSV files and use a parallel interleave transformation.

D.

Set the reshuffle_each_iteration parameter to true in the tf.data.Dataset.shuffle method.

Buy Now
Questions 29

You need to train a regression model based on a dataset containing 50,000 records that is stored in BigQuery. The data includes a total of 20 categorical and numerical features with a target variable that can include negative values. You need to minimize effort and training time while maximizing model performance. What approach should you take to train this regression model?

Options:

A.

Create a custom TensorFlow DNN model.

B.

Use BQML XGBoost regression to train the model

C.

Use AutoML Tables to train the model without early stopping.

D.

Use AutoML Tables to train the model with RMSLE as the optimization objective

Buy Now
Questions 30

You are working on a system log anomaly detection model for a cybersecurity organization. You have developed the model using TensorFlow, and you plan to use it for real-time prediction. You need to create a Dataflow pipeline to ingest data via Pub/Sub and write the results to BigQuery. You want to minimize the serving latency as much as possible. What should you do?

Options:

A.

Containerize the model prediction logic in Cloud Run, which is invoked by Dataflow.

B.

Load the model directly into the Dataflow job as a dependency, and use it for prediction.

C.

Deploy the model to a Vertex AI endpoint, and invoke this endpoint in the Dataflow job.

D.

Deploy the model in a TFServing container on Google Kubernetes Engine, and invoke it in the Dataflow job.

Buy Now
Questions 31

You are developing an ML model in a Vertex Al Workbench notebook. You want to track artifacts and compare models during experimentation using different approaches. You need to rapidly and easily transition successful experiments to production as you iterate on your model implementation. What should you do?

Options:

A.

1 Initialize the Vertex SDK with the name of your experiment Log parameters and metrics for each experiment, and attach dataset and model artifacts as inputs and outputs to each execution.

2 After a successful experiment create a Vertex Al pipeline.

B.

1. Initialize the Vertex SDK with the name of your experiment Log parameters and metrics for each experiment, save your dataset to a Cloud Storage bucket and upload the models to Vertex Al Model Registry.

2 After a successful experiment create a Vertex Al pipeline.

C.

1 Create a Vertex Al pipeline with parameters you want to track as arguments to your Pipeline Job Use the Metrics. Model, and Dataset artifact types from the Kubeflow Pipelines DSL as the inputs and outputs of the components in your pipeline.

2. Associate the pipeline with your experiment when you submit the job.

D.

1 Create a Vertex Al pipeline Use the Dataset and Model artifact types from the Kubeflow Pipelines. DSL as the inputs and outputs of the components in your pipeline.

2. In your training component use the Vertex Al SDK to create an experiment run Configure the log_params and log_metrics functions to track parameters and metrics of your experiment.

Buy Now
Questions 32

You deployed an ML model into production a year ago. Every month, you collect all raw requests that were sent to your model prediction service during the previous month. You send a subset of these requests to a human labeling service to evaluate your model’s performance. After a year, you notice that your model's performance sometimes degrades significantly after a month, while other times it takes several months to notice any decrease in performance. The labeling service is costly, but you also need to avoid large performance degradations. You want to determine how often you should retrain your model to maintain a high level of performance while minimizing cost. What should you do?

Options:

A.

Train an anomaly detection model on the training dataset, and run all incoming requests through this model. If an anomaly is detected, send the most recent serving data to the labeling service.

B.

Identify temporal patterns in your model’s performance over the previous year. Based on these patterns, create a schedule for sending serving data to the labeling service for the next year.

C.

Compare the cost of the labeling service with the lost revenue due to model performance degradation over the past year. If the lost revenue is greater than the cost of the labeling service, increase the frequency of model retraining; otherwise, decrease the model retraining frequency.

D.

Run training-serving skew detection batch jobs every few days to compare the aggregate statistics of the features in the training dataset with recent serving data. If skew is detected, send the most recent serving data to the labeling service.

Buy Now
Questions 33

You developed a BigQuery ML linear regressor model by using a training dataset stored in a BigQuery table. New data is added to the table every minute. You are using Cloud Scheduler and Vertex Al Pipelines to automate hourly model training, and use the model for direct inference. The feature preprocessing logic includes quantile bucketization and MinMax scaling on data received in the last hour. You want to minimize storage and computational overhead. What should you do?

Options:

A.

Create a component in the Vertex Al Pipelines directed acyclic graph (DAG) to calculate the required statistics, and pass the statistics on to subsequent components.

B.

Preprocess and stage the data in BigQuery prior to feeding it to the model during training and inference.

C.

Create SQL queries to calculate and store the required statistics in separate BigQuery tables that are referenced in the CREATE MODEL statement.

D.

Use the TRANSFORM clause in the CREATE MODEL statement in the SQL query to calculate the required statistics.

Buy Now
Questions 34

You are creating a model training pipeline to predict sentiment scores from text-based product reviews. You want to have control over how the model parameters are tuned, and you will deploy the model to an endpoint after it has been trained You will use Vertex Al Pipelines to run the pipeline You need to decide which Google Cloud pipeline components to use What components should you choose?

Options:

A.

B.

C.

D.

Buy Now
Questions 35

You have created a Vertex Al pipeline that includes two steps. The first step preprocesses 10 TB data completes in about 1 hour, and saves the result in a Cloud Storage bucket The second step uses the processed data to train a model You need to update the model's code to allow you to test different algorithms You want to reduce pipeline execution time and cost, while also minimizing pipeline changes What should you do?

Options:

A.

Add a pipeline parameter and an additional pipeline step Depending on the parameter value the pipeline step conducts or skips data preprocessing and starts model training.

B.

Create another pipeline without the preprocessing step, and hardcode the preprocessed Cloud Storage file location for model training.

C.

Configure a machine with more CPU and RAM from the compute-optimized machine family for the data preprocessing step.

D.

Enable caching for the pipeline job. and disable caching for the model training step.

Buy Now
Questions 36

You work for a credit card company and have been asked to create a custom fraud detection model based on historical data using AutoML Tables. You need to prioritize detection of fraudulent transactions while minimizing false positives. Which optimization objective should you use when training the model?

Options:

A.

An optimization objective that minimizes Log loss

B.

An optimization objective that maximizes the Precision at a Recall value of 0.50

C.

An optimization objective that maximizes the area under the precision-recall curve (AUC PR) value

D.

An optimization objective that maximizes the area under the receiver operating characteristic curve (AUC ROC) value

Buy Now
Questions 37

You need to develop an image classification model by using a large dataset that contains labeled images in a Cloud Storage Bucket. What should you do?

Options:

A.

Use Vertex Al Pipelines with the Kubeflow Pipelines SDK to create a pipeline that reads the images from Cloud Storage and trains the model.

B.

Use Vertex Al Pipelines with TensorFlow Extended (TFX) to create a pipeline that reads the images from Cloud Storage and trams the model.

C.

Import the labeled images as a managed dataset in Vertex Al: and use AutoML to tram the model.

D.

Convert the image dataset to a tabular format using Dataflow Load the data into BigQuery and use BigQuery ML to tram the model.

Buy Now
Questions 38

You recently used BigQuery ML to train an AutoML regression model. You shared results with your team and received positive feedback. You need to deploy your model for online prediction as quickly as possible. What should you do?

Options:

A.

Retrain the model by using BigQuery ML. and specify Vertex Al as the model registry Deploy the model from Vertex Al Model Registry to a Vertex Al endpoint.

B.

Retrain the model by using Vertex Al Deploy the model from Vertex Al Model Registry to a Vertex Al endpoint.

C.

Alter the model by using BigQuery ML and specify Vertex Al as the model registry Deploy the model from Vertex Al Model Registry to a Vertex Al endpoint.

D.

Export the model from BigQuery ML to Cloud Storage Import the model into Vertex Al Model Registry Deploy the model to a Vertex Al endpoint.

Buy Now
Questions 39

You work for an advertising company and want to understand the effectiveness of your company's latest advertising campaign. You have streamed 500 MB of campaign data into BigQuery. You want to query the table, and then manipulate the results of that query with a pandas dataframe in an Al Platform notebook. What should you do?

Options:

A.

Use Al Platform Notebooks' BigQuery cell magic to query the data, and ingest the results as a pandas dataframe

B.

Export your table as a CSV file from BigQuery to Google Drive, and use the Google Drive API to ingest the file into your notebook instance

C.

Download your table from BigQuery as a local CSV file, and upload it to your Al Platform notebook instance Use pandas. read_csv to ingest the file as a pandas dataframe

D.

From a bash cell in your Al Platform notebook, use the bq extract command to export the table as a CSV file to Cloud Storage, and then use gsutii cp to copy the data into the notebook Use pandas. read_csv to ingest the file as a pandas dataframe

Buy Now
Questions 40

You work with a learn of researchers lo develop state-of-the-art algorithms for financial analysis. Your team develops and debugs complex models in TensorFlow. You want to maintain the ease of debugging while also reducing the model training time. How should you set up your training environment?

Options:

A.

Configure a v3-8 TPU VM.

B.

Configure a v3-8 TPU node.

C.

Configure a c2-standard-60 VM without GPUs.

D, Configure a n1-standard-4 VM with 1 NVIDIA P100 GPU.

Buy Now
Questions 41

You work at a gaming startup that has several terabytes of structured data in Cloud Storage. This data includes gameplay time data user metadata and game metadata. You want to build a model that recommends new games to users that requires the least amount of coding. What should you do?

Options:

A.

Load the data in BigQuery Use BigQuery ML to tram an Autoencoder model.

B.

Load the data in BigQuery Use BigQuery ML to train a matrix factorization model.

C.

Read data to a Vertex Al Workbench notebook Use TensorFlow to train a two-tower model.

D.

Read data to a Vertex AI Workbench notebook Use TensorFlow to train a matrix factorization model.

Buy Now
Questions 42

You work for an online grocery store. You recently developed a custom ML model that recommends a recipe when a user arrives at the website. You chose the machine type on the Vertex Al endpoint to optimize costs by using the queries per second (QPS) that the model can serve, and you deployed it on a single machine with 8 vCPUs and no accelerators.

A holiday season is approaching and you anticipate four times more traffic during this time than the typical daily traffic You need to ensure that the model can scale efficiently to the increased demand. What should you do?

Options:

A.

1, Maintain the same machine type on the endpoint.

2 Set up a monitoring job and an alert for CPU usage

3 If you receive an alert add a compute node to the endpoint

B.

1 Change the machine type on the endpoint to have 32 vCPUs

2. Set up a monitoring job and an alert for CPU usage

3 If you receive an alert, scale the vCPUs further as needed

C.

1 Maintain the same machine type on the endpoint Configure the endpoint to enable autoscalling based on vCPU usage.

2 Set up a monitoring job and an alert for CPU usage

3 If you receive an alert investigate the cause

D.

1 Change the machine type on the endpoint to have a GPU_ Configure the endpoint to enable autoscaling based on the GPU usage.

2 Set up a monitoring job and an alert for GPU usage.

3 If you receive an alert investigate the cause.

Buy Now
Questions 43

You are building a custom image classification model and plan to use Vertex Al Pipelines to implement the end-to-end training. Your dataset consists of images that need to be preprocessed before they can be used to train the model. The preprocessing steps include resizing the images, converting them to grayscale, and extracting features. You have already implemented some Python functions for the preprocessing tasks. Which components should you use in your pipeline'?

Options:

A.

B.

C.

D.

Buy Now
Questions 44

You work for a pet food company that manages an online forum Customers upload photos of their pets on the forum to share with others About 20 photos are uploaded daily You want to automatically and in near real time detect whether each uploaded photo has an animal You want to prioritize time and minimize cost of your application development and deployment What should you do?

Options:

A.

Send user-submitted images to the Cloud Vision API Use object localization to identify all objects in the image and compare the results against a list of animals.

B.

Download an object detection model from TensorFlow Hub. Deploy the model to a Vertex Al endpoint. Send new user-submitted images to the model endpoint to classify whether each photo has an animal.

C.

Manually label previously submitted images with bounding boxes around any animals Build an AutoML object detection model by using Vertex Al Deploy the model to a Vertex Al endpoint Send new user-submitted images to your model endpoint to detect whether each photo has an animal.

D.

Manually label previously submitted images as having animals or not Create an image dataset on Vertex Al Train a classification model by using Vertex AutoML to distinguish the two classes Deploy the model to a Vertex Al endpoint Send new user-submitted images to your model endpoint to classify whether each photo has an animal.

Buy Now
Questions 45

You have trained a DNN regressor with TensorFlow to predict housing prices using a set of predictive features. Your default precision is tf.float64, and you use a standard TensorFlow estimator;

estimator = tf.estimator.DNNRegressor(

feature_columns=[YOUR_LIST_OF_FEATURES],

hidden_units-[1024, 512, 256],

dropout=None)

Your model performs well, but Just before deploying it to production, you discover that your current serving latency is 10ms @ 90 percentile and you currently serve on CPUs. Your production requirements expect a model latency of 8ms @ 90 percentile. You are willing to accept a small decrease in performance in order to reach the latency requirement Therefore your plan is to improve latency while evaluating how much the model's prediction decreases. What should you first try to quickly lower the serving latency?

Options:

A.

Increase the dropout rate to 0.8 in_PREDICT mode by adjusting the TensorFlow Serving parameters

B.

Increase the dropout rate to 0.8 and retrain your model.

C.

Switch from CPU to GPU serving

D.

Apply quantization to your SavedModel by reducing the floating point precision to tf.float16.

Buy Now
Questions 46

Your team is training a large number of ML models that use different algorithms, parameters and datasets. Some models are trained in Vertex Ai Pipelines, and some are trained on Vertex Al Workbench notebook instances. Your team wants to compare the performance of the models across both services. You want to minimize the effort required to store the parameters and metrics What should you do?

Options:

A.

Implement an additional step for all the models running in pipelines and notebooks to export parameters and metrics to BigQuery.

B.

Create a Vertex Al experiment Submit all the pipelines as experiment runs. For models trained on notebooks log parameters and metrics by using the Vertex Al SDK.

C.

Implement all models in Vertex Al Pipelines Create a Vertex Al experiment, and associate all pipeline runs with that experiment.

D.

Store all model parameters and metrics as mode! metadata by using the Vertex Al Metadata API.

Buy Now
Questions 47

You are an ML engineer at a large grocery retailer with stores in multiple regions. You have been asked to create an inventory prediction model. Your models features include region, location, historical demand, and seasonal popularity. You want the algorithm to learn from new inventory data on a daily basis. Which algorithms should you use to build the model?

Options:

A.

Classification

B.

Reinforcement Learning

C.

Recurrent Neural Networks (RNN)

D.

Convolutional Neural Networks (CNN)

Buy Now
Questions 48

Your data science team needs to rapidly experiment with various features, model architectures, and hyperparameters. They need to track the accuracy metrics for various experiments and use an API to query the metrics over time. What should they use to track and report their experiments while minimizing manual effort?

Options:

A.

Use Kubeflow Pipelines to execute the experiments Export the metrics file, and query the results using the Kubeflow Pipelines API.

B.

Use Al Platform Training to execute the experiments Write the accuracy metrics to BigQuery, and query the results using the BigQueryAPI.

C.

Use Al Platform Training to execute the experiments Write the accuracy metrics to Cloud Monitoring, and query the results using the Monitoring API.

D.

Use Al Platform Notebooks to execute the experiments. Collect the results in a shared Google Sheets file, and query the results using the Google Sheets API

Buy Now
Questions 49

You work for a retail company. You have been asked to develop a model to predict whether a customer will purchase a product on a given day. Your team has processed the company's sales data, and created a table with the following rows:

• Customer_id

• Product_id

• Date

• Days_since_last_purchase (measured in days)

• Average_purchase_frequency (measured in 1/days)

• Purchase (binary class, if customer purchased product on the Date)

You need to interpret your models results for each individual prediction. What should you do?

Options:

A.

Create a BigQuery table Use BigQuery ML to build a boosted tree classifier Inspect the partition rules of the trees to understand how each prediction flows through the trees.

B.

Create a Vertex Al tabular dataset Train an AutoML model to predict customer purchases Deploy the model

to a Vertex Al endpoint and enable feature attributions Use the "explain" method to get feature attribution values for each individual prediction.

C.

Create a BigQuery table Use BigQuery ML to build a logistic regression classification model Use the values of the coefficients of the model to interpret the feature importance with higher values corresponding to more importance.

D.

Create a Vertex Al tabular dataset Train an AutoML model to predict customer purchases Deploy the model to a Vertex Al endpoint. At each prediction enable L1 regularization to detect non-informative features.

Buy Now
Questions 50

You work on the data science team at a manufacturing company. You are reviewing the company's historical sales data, which has hundreds of millions of records. For your exploratory data analysis, you need to calculate descriptive statistics such as mean, median, and mode; conduct complex statistical tests for hypothesis testing; and plot variations of the features over time You want to use as much of the sales data as possible in your analyses while minimizing computational resources. What should you do?

Options:

A.

Spin up a Vertex Al Workbench user-managed notebooks instance and import the dataset Use this data to create statistical and visual analyses

B.

Visualize the time plots in Google Data Studio. Import the dataset into Vertex Al Workbench user-managed notebooks Use this data to calculate the descriptive statistics and run the statistical analyses

C.

Use BigQuery to calculate the descriptive statistics. Use Vertex Al Workbench user-managed notebooks to visualize the time plots and run the statistical analyses.

D Use BigQuery to calculate the descriptive statistics, and use Google Data Studio to visualize the time plots. Use Vertex Al Workbench user-managed notebooks to run the statistical analyses.

Buy Now
Questions 51

You have been asked to build a model using a dataset that is stored in a medium-sized (~10 GB) BigQuery table. You need to quickly determine whether this data is suitable for model development. You want to create a one-time report that includes both informative visualizations of data distributions and more sophisticated statistical analyses to share with other ML engineers on your team. You require maximum flexibility to create your report. What should you do?

Options:

A.

Use Vertex AI Workbench user-managed notebooks to generate the report.

B.

Use the Google Data Studio to create the report.

C.

Use the output from TensorFlow Data Validation on Dataflow to generate the report.

D.

Use Dataprep to create the report.

Buy Now
Questions 52

While running a model training pipeline on Vertex Al, you discover that the evaluation step is failing because of an out-of-memory error. You are currently using TensorFlow Model Analysis (TFMA) with a standard Evaluator TensorFlow Extended (TFX) pipeline component for the evaluation step. You want to stabilize the pipeline without downgrading the evaluation quality while minimizing infrastructure overhead. What should you do?

Options:

A.

Add tfma.MetricsSpec () to limit the number of metrics in the evaluation step.

B.

Migrate your pipeline to Kubeflow hosted on Google Kubernetes Engine, and specify the appropriate node parameters for the evaluation step.

C.

Include the flag -runner=DataflowRunner in beam_pipeline_args to run the evaluation step on Dataflow.

D.

Move the evaluation step out of your pipeline and run it on custom Compute Engine VMs with sufficient memory.

Buy Now
Questions 53

You have recently developed a custom model for image classification by using a neural network. You need to automatically identify the values for learning rate, number of layers, and kernel size. To do this, you plan to run multiple jobs in parallel to identify the parameters that optimize performance. You want to minimize custom code development and infrastructure management. What should you do?

Options:

A.

Create a Vertex Al pipeline that runs different model training jobs in parallel.

B.

Train an AutoML image classification model.

C.

Create a custom training job that uses the Vertex Al Vizier SDK for parameter optimization.

D.

Create a Vertex Al hyperparameter tuning job.

Buy Now
Questions 54

You work as an analyst at a large banking firm. You are developing a robust, scalable ML pipeline to train several regression and classification models. Your primary focus for the pipeline is model interpretability. You want to productionize the pipeline as quickly as possible What should you do?

Options:

A.

Use Tabular Workflow for Wide & Deep through Vertex Al Pipelines to jointly train wide linear models and

deep neural networks.

B.

Use Google Kubernetes Engine to build a custom training pipeline for XGBoost-based models.

C.

Use Tabular Workflow forTabel through Vertex Al Pipelines to train attention-based models.

D.

Use Cloud Composer to build the training pipelines for custom deep learning-based models.

Buy Now
Questions 55

You are developing an ML pipeline using Vertex Al Pipelines. You want your pipeline to upload a new version of the XGBoost model to Vertex Al Model Registry and deploy it to Vertex Al End points for online inference. You want to use the simplest approach. What should you do?

Options:

A.

Use the Vertex Al REST API within a custom component based on a vertex-ai/prediction/xgboost-cpu image.

B.

Use the Vertex Al ModelEvaluationOp component to evaluate the model.

C.

Use the Vertex Al SDK for Python within a custom component based on a python: 3.10 Image.

D.

Chain the Vertex Al ModelUploadOp and ModelDeployop components together.

Buy Now
Questions 56

You are an ML engineer in the contact center of a large enterprise. You need to build a sentiment analysis tool that predicts customer sentiment from recorded phone conversations. You need to identify the best approach to building a model while ensuring that the gender, age, and cultural differences of the customers who called the contact center do not impact any stage of the model development pipeline and results. What should you do?

Options:

A.

Extract sentiment directly from the voice recordings

B.

Convert the speech to text and build a model based on the words

C.

Convert the speech to text and extract sentiments based on the sentences

D.

Convert the speech to text and extract sentiment using syntactical analysis

Buy Now
Questions 57

You work at an ecommerce startup. You need to create a customer churn prediction model Your company's recent sales records are stored in a BigQuery table You want to understand how your initial model is making predictions. You also want to iterate on the model as quickly as possible while minimizing cost How should you build your first model?

Options:

A.

Export the data to a Cloud Storage Bucket Load the data into a pandas DataFrame on Vertex Al Workbench and train a logistic regression model with scikit-learn.

B.

Create a tf.data.Dataset by using the TensorFlow BigQueryChent Implement a deep neural network in TensorFlow.

C.

Prepare the data in BigQuery and associate the data with a Vertex Al dataset Create an

AutoMLTabuiarTrainmgJob to train a classification model.

D.

Export the data to a Cloud Storage Bucket Create tf. data. Dataset to read the data from Cloud Storage Implement a deep neural network in TensorFlow.

Buy Now
Questions 58

Your company manages an ecommerce website. You developed an ML model that recommends additional products to users in near real time based on items currently in the user's cart. The workflow will include the following processes.

1 The website will send a Pub/Sub message with the relevant data and then receive a message with the prediction from Pub/Sub.

2 Predictions will be stored in BigQuery

3. The model will be stored in a Cloud Storage bucket and will be updated frequently

You want to minimize prediction latency and the effort required to update the model How should you reconfigure the architecture?

Options:

A.

Write a Cloud Function that loads the model into memory for prediction Configure the function to be

triggered when messages are sent to Pub/Sub.

B.

Create a pipeline in Vertex Al Pipelines that performs preprocessing, prediction and postprocessing

Configure the pipeline to be triggered by a Cloud Function when messages are sent to Pub/Sub.

C.

Expose the model as a Vertex Al endpoint Write a custom DoFn in a Dataflow job that calls the endpoint for

prediction.

D.

Use the Runlnference API with watchFilePatterr. in a Dataflow job that wraps around the model and serves predictions.

Buy Now
Questions 59

You are an ML engineer at a travel company. You have been researching customers’ travel behavior for many years, and you have deployed models that predict customers’ vacation patterns. You have observed that customers’ vacation destinations vary based on seasonality and holidays; however, these seasonal variations are similar across years. You want to quickly and easily store and compare the model versions and performance statistics across years. What should you do?

Options:

A.

Store the performance statistics in Cloud SQL. Query that database to compare the performance statistics across the model versions.

B.

Create versions of your models for each season per year in Vertex AI. Compare the performance statistics across the models in the Evaluate tab of the Vertex AI UI.

C.

Store the performance statistics of each pipeline run in Kubeflow under an experiment for each season per year. Compare the results across the experiments in the Kubeflow UI.

D.

Store the performance statistics of each version of your models using seasons and years as events in Vertex ML Metadata. Compare the results across the slices.

Buy Now
Questions 60

You work at a leading healthcare firm developing state-of-the-art algorithms for various use cases You have unstructured textual data with custom labels You need to extract and classify various medical phrases with these labels What should you do?

Options:

A.

Use the Healthcare Natural Language API to extract medical entities.

B.

Use a BERT-based model to fine-tune a medical entity extraction model.

C.

Use AutoML Entity Extraction to train a medical entity extraction model.

D.

Use TensorFlow to build a custom medical entity extraction model.

Buy Now
Questions 61

You work for an organization that operates a streaming music service. You have a custom production model that is serving a "next song" recommendation based on a user’s recent listening history. Your model is deployed on a Vertex Al endpoint. You recently retrained the same model by using fresh data. The model received positive test results offline. You now want to test the new model in production while minimizing complexity. What should you do?

Options:

A.

Create a new Vertex Al endpoint for the new model and deploy the new model to that new endpoint Build a service to randomly send 5% of production traffic to the new endpoint Monitor end-user metrics such as listening time If end-user metrics improve between models over time gradually increase the percentage of production traffic sent to the new endpoint.

B.

Capture incoming prediction requests in BigQuery Create an experiment in Vertex Al Experiments Run batch predictions for both models using the captured data Use the user's selected song to compare the models performance side by side If the new models performance metrics are better than the previous model deploy the new model to production.

C.

Deploy the new model to the existing Vertex Al endpoint Use traffic splitting to send 5% of production traffic to the new model Monitor end-user metrics, such as listening time If end-user metrics improve between models over time, gradually increase the percentage of production traffic sent to the new model.

D.

Configure a model monitoring job for the existing Vertex Al endpoint. Configure the monitoring job to detect prediction drift, and set a threshold for alerts Update the model on the endpoint from the previous model to the new model If you receive an alert of prediction drift, revert to the previous model.

Buy Now
Questions 62

You are building a predictive maintenance model to preemptively detect part defects in bridges. You plan to use high definition images of the bridges as model inputs. You need to explain the output of the model to the relevant stakeholders so they can take appropriate action. How should you build the model?

Options:

A.

Use scikit-learn to build a tree-based model, and use SHAP values to explain the model output.

B.

Use scikit-lean to build a tree-based model, and use partial dependence plots (PDP) to explain the model output.

C.

Use TensorFlow to create a deep learning-based model and use Integrated Gradients to explain the model

output.

D.

Use TensorFlow to create a deep learning-based model and use the sampled Shapley method to explain the model output.

Buy Now
Questions 63

You work at an organization that maintains a cloud-based communication platform that integrates conventional chat, voice, and video conferencing into one platform. The audio recordings are stored in Cloud Storage. All recordings have an 8 kHz sample rate and are more than one minute long. You need to implement a new feature in the platform that will automatically transcribe voice call recordings into a text for future applications, such as call summarization and sentiment analysis. How should you implement the voice call transcription feature following Google-recommended best practices?

Options:

A.

Use the original audio sampling rate, and transcribe the audio by using the Speech-to-Text API with synchronous recognition.

B.

Use the original audio sampling rate, and transcribe the audio by using the Speech-to-Text API with asynchronous recognition.

C.

Upsample the audio recordings to 16 kHz. and transcribe the audio by using the Speech-to-Text API with synchronous recognition.

D.

Upsample the audio recordings to 16 kHz. and transcribe the audio by using the Speech-to-Text API with asynchronous recognition.

Buy Now
Questions 64

You are pre-training a large language model on Google Cloud. This model includes custom TensorFlow operations in the training loop Model training will use a large batch size, and you expect training to take several weeks You need to configure a training architecture that minimizes both training time and compute costs What should you do?

Options:

A.

B.

C.

D.

Buy Now
Questions 65

You are collaborating on a model prototype with your team. You need to create a Vertex Al Workbench environment for the members of your team and also limit access to other employees in your project. What should you do?

Options:

A.

1. Create a new service account and grant it the Notebook Viewer role.

2 Grant the Service Account User role to each team member on the service account.

3 Grant the Vertex Al User role to each team member.

4. Provision a Vertex Al Workbench user-managed notebook instance that uses the new service account.

B.

1. Grant the Vertex Al User role to the default Compute Engine service account.

2. Grant the Service Account User role to each team member on the default Compute Engine service account.

3. Provision a Vertex Al Workbench user-managed notebook instance that uses the default Compute Engine service account.

C.

1 Create a new service account and grant it the Vertex Al User role.

2 Grant the Service Account User role to each team member on the service account.

3. Grant the Notebook Viewer role to each team member.

4 Provision a Vertex Al Workbench user-managed notebook instance that uses the new service account.

D.

1 Grant the Vertex Al User role to the primary team member.

2. Grant the Notebook Viewer role to the other team members.

3. Provision a Vertex Al Workbench user-managed notebook instance that uses the primary user’s account.

Buy Now
Questions 66

You work for a retail company. You have been tasked with building a model to determine the probability of churn for each customer. You need the predictions to be interpretable so the results can be used to develop marketing campaigns that target at-risk customers. What should you do?

Options:

A.

Build a random forest regression model in a Vertex Al Workbench notebook instance Configure the model to generate feature importance’s after the model is trained.

B.

Build an AutoML tabular regression model Configure the model to generate explanations when it makes predictions.

C.

Build a custom TensorFlow neural network by using Vertex Al custom training Configure the model to generate explanations when it makes predictions.

D.

Build a random forest classification model in a Vertex Al Workbench notebook instance Configure the model to generate feature importance’s after the model is trained.

Buy Now
Questions 67

Your data science team is training a PyTorch model for image classification based on a pre-trained RestNet model. You need to perform hyperparameter tuning to optimize for several parameters. What should you do?

Options:

A.

Convert the model to a Keras model, and run a Keras Tuner job.

B.

Run a hyperparameter tuning job on AI Platform using custom containers.

C.

Create a Kuberflow Pipelines instance, and run a hyperparameter tuning job on Katib.

D.

Convert the model to a TensorFlow model, and run a hyperparameter tuning job on AI Platform.

Buy Now
Questions 68

You lead a data science team at a large international corporation. Most of the models your team trains are large-scale models using high-level TensorFlow APIs on AI Platform with GPUs. Your team usually

takes a few weeks or months to iterate on a new version of a model. You were recently asked to review your team’s spending. How should you reduce your Google Cloud compute costs without impacting the model’s performance?

Options:

A.

Use AI Platform to run distributed training jobs with checkpoints.

B.

Use AI Platform to run distributed training jobs without checkpoints.

C.

Migrate to training with Kuberflow on Google Kubernetes Engine, and use preemptible VMs with checkpoints.

D.

Migrate to training with Kuberflow on Google Kubernetes Engine, and use preemptible VMs without checkpoints.

Buy Now
Questions 69

You need to design an architecture that serves asynchronous predictions to determine whether a particular mission-critical machine part will fail. Your system collects data from multiple sensors from the machine. You want to build a model that will predict a failure in the next N minutes, given the average of each sensor’s data from the past 12 hours. How should you design the architecture?

Options:

A.

1. HTTP requests are sent by the sensors to your ML model, which is deployed as a microservice and exposes a REST API for prediction

2. Your application queries a Vertex AI endpoint where you deployed your model.

3. Responses are received by the caller application as soon as the model produces the prediction.

B.

1. Events are sent by the sensors to Pub/Sub, consumed in real time, and processed by a Dataflow stream processing pipeline.

2. The pipeline invokes the model for prediction and sends the predictions to another Pub/Sub topic.

3. Pub/Sub messages containing predictions are then consumed by a downstream system for monitoring.

C.

1. Export your data to Cloud Storage using Dataflow.

2. Submit a Vertex AI batch prediction job that uses your trained model in Cloud Storage to perform scoring on the preprocessed data.

3. Export the batch prediction job outputs from Cloud Storage and import them into Cloud SQL.

D.

1. Export the data to Cloud Storage using the BigQuery command-line tool

2. Submit a Vertex AI batch prediction job that uses your trained model in Cloud Storage to perform scoring on the preprocessed data.

3. Export the batch prediction job outputs from Cloud Storage and import them into BigQuery.

Buy Now
Questions 70

You have recently trained a scikit-learn model that you plan to deploy on Vertex Al. This model will support both online and batch prediction. You need to preprocess input data for model inference. You want to package the model for deployment while minimizing additional code What should you do?

Options:

A.

1 Upload your model to the Vertex Al Model Registry by using a prebuilt scikit-learn prediction container

2 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job that uses the instanceConfig.inscanceType setting to transform your input data

B.

1 Wrap your model in a custom prediction routine (CPR). and build a container image from the CPR local model

2 Upload your sci-kit learn model container to Vertex Al Model Registry

3 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job

C.

1. Create a custom container for your sci-kit learn model,

2 Define a custom serving function for your model

3 Upload your model and custom container to Vertex Al Model Registry

4 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job

D.

1 Create a custom container for your sci-kit learn model.

2 Upload your model and custom container to Vertex Al Model Registry

3 Deploy your model to Vertex Al Endpoints, and create a Vertex Al batch prediction job that uses the instanceConfig. instanceType setting to transform your input data

Buy Now
Questions 71

You recently deployed a model to a Vertex Al endpoint Your data drifts frequently so you have enabled request-response logging and created a Vertex Al Model Monitoring job. You have observed that your model is receiving higher traffic than expected. You need to reduce the model monitoring cost while continuing to quickly detect drift. What should you do?

Options:

A.

Replace the monitoring job with a DataFlow pipeline that uses TensorFlow Data Validation (TFDV).

B.

Replace the monitoring job with a custom SQL scnpt to calculate statistics on the features and predictions in BigQuery.

C.

Decrease the sample_rate parameter in the Randomsampleconfig of the monitoring job.

D.

Increase the monitor_interval parameter in the scheduieconfig of the monitoring job.

Buy Now
Questions 72

You are experimenting with a built-in distributed XGBoost model in Vertex AI Workbench user-managed notebooks. You use BigQuery to split your data into training and validation sets using the following queries:

CREATE OR REPLACE TABLE ‘myproject.mydataset.training‘ AS

(SELECT * FROM ‘myproject.mydataset.mytable‘ WHERE RAND() <= 0.8);

CREATE OR REPLACE TABLE ‘myproject.mydataset.validation‘ AS

(SELECT * FROM ‘myproject.mydataset.mytable‘ WHERE RAND() <= 0.2);

After training the model, you achieve an area under the receiver operating characteristic curve (AUC ROC) value of 0.8, but after deploying the model to production, you notice that your model performance has dropped to an AUC ROC value of 0.65. What problem is most likely occurring?

Options:

A.

There is training-serving skew in your production environment.

B.

There is not a sufficient amount of training data.

C.

The tables that you created to hold your training and validation records share some records, and you may not be using all the data in your initial table.

D.

The RAND() function generated a number that is less than 0.2 in both instances, so every record in the validation table will also be in the training table.

Buy Now
Questions 73

You are building a TensorFlow model for a financial institution that predicts the impact of consumer spending on inflation globally. Due to the size and nature of the data, your model is long-running across all types of hardware, and you have built frequent checkpointing into the training process. Your organization has asked you to minimize cost. What hardware should you choose?

Options:

A.

A Vertex AI Workbench user-managed notebooks instance running on an n1-standard-16 with 4 NVIDIA P100 GPUs

B.

A Vertex AI Workbench user-managed notebooks instance running on an n1-standard-16 with an NVIDIA P100 GPU

C.

A Vertex AI Workbench user-managed notebooks instance running on an n1-standard-16 with a non-preemptible v3-8 TPU

D.

A Vertex AI Workbench user-managed notebooks instance running on an n1-standard-16 with a preemptible v3-8 TPU

Buy Now
Questions 74

You manage a team of data scientists who use a cloud-based backend system to submit training jobs. This system has become very difficult to administer, and you want to use a managed service instead. The data scientists you work with use many different frameworks, including Keras, PyTorch, theano. Scikit-team, and custom libraries. What should you do?

Options:

A.

Use the Al Platform custom containers feature to receive training jobs using any framework

B.

Configure Kubeflow to run on Google Kubernetes Engine and receive training jobs through TFJob

C.

Create a library of VM images on Compute Engine; and publish these images on a centralized repository

D.

Set up Slurm workload manager to receive jobs that can be scheduled to run on your cloud infrastructure.

Buy Now
Questions 75

You created an ML pipeline with multiple input parameters. You want to investigate the tradeoffs between different parameter combinations. The parameter options are

• input dataset

• Max tree depth of the boosted tree regressor

• Optimizer learning rate

You need to compare the pipeline performance of the different parameter combinations measured in F1 score, time to train and model complexity. You want your approach to be reproducible and track all pipeline runs on the same platform. What should you do?

Options:

A.

1 Use BigQueryML to create a boosted tree regressor and use the hyperparameter tuning capability

2 Configure the hyperparameter syntax to select different input datasets. max tree depths, and optimizer teaming rates Choose the grid search option

B.

1 Create a Vertex Al pipeline with a custom model training job as part of the pipeline Configure the pipeline's parameters to include those you are investigating

2 In the custom training step, use the Bayesian optimization method with F1 score as the target to maximize

C.

1 Create a Vertex Al Workbench notebook for each of the different input datasets

2 In each notebook, run different local training jobs with different combinations of the max tree depth and optimizer learning rate parameters

3 After each notebook finishes, append the results to a BigQuery table

D.

1 Create an experiment in Vertex Al Experiments

2. Create a Vertex Al pipeline with a custom model training job as part of the pipeline. Configure the pipelines parameters to include those you are investigating

3. Submit multiple runs to the same experiment using different values for the parameters

Buy Now
Questions 76

You are an ML engineer at a global car manufacturer. You need to build an ML model to predict car sales in different cities around the world. Which features or feature crosses should you use to train city-specific relationships between car type and number of sales?

Options:

A.

Three individual features binned latitude, binned longitude, and one-hot encoded car type

B.

One feature obtained as an element-wise product between latitude, longitude, and car type

C.

One feature obtained as an element-wise product between binned latitude, binned longitude, and one-hot encoded car type

D.

Two feature crosses as a element-wise product the first between binned latitude and one-hot encoded car type, and the second between binned longitude and one-hot encoded car type

Buy Now
Questions 77

You are an ML engineer at a regulated insurance company. You are asked to develop an insurance approval model that accepts or rejects insurance applications from potential customers. What factors should you consider before building the model?

Options:

A.

Redaction, reproducibility, and explainability

B.

Traceability, reproducibility, and explainability

C.

Federated learning, reproducibility, and explainability

D.

Differential privacy federated learning, and explainability

Buy Now
Questions 78

You are developing an ML model using a dataset with categorical input variables. You have randomly split half of the data into training and test sets. After applying one-hot encoding on the categorical variables in the training set, you discover that one categorical variable is missing from the test set. What should you do?

Options:

A.

Randomly redistribute the data, with 70% for the training set and 30% for the test set

B.

Use sparse representation in the test set

C.

Apply one-hot encoding on the categorical variables in the test data.

D.

Collect more data representing all categories

Buy Now
Questions 79

You built a custom ML model using scikit-learn. Training time is taking longer than expected. You decide to migrate your model to Vertex AI Training, and you want to improve the model’s training time. What should you try out first?

Options:

A.

Migrate your model to TensorFlow, and train it using Vertex AI Training.

B.

Train your model in a distributed mode using multiple Compute Engine VMs.

C.

Train your model with DLVM images on Vertex AI, and ensure that your code utilizes NumPy and SciPy internal methods whenever possible.

D.

Train your model using Vertex AI Training with GPUs.

Buy Now
Questions 80

You are an AI architect at a popular photo-sharing social media platform. Your organization’s content moderation team currently scans images uploaded by users and removes explicit images manually. You want to implement an AI service to automatically prevent users from uploading explicit images. What should you do?

Options:

A.

Develop a custom TensorFlow model in a Vertex AI Workbench instance. Train the model on a dataset of manually labeled images. Deploy the model to a Vertex AI endpoint. Run periodic batch inference to identify inappropriate uploads and report them to the content moderation team.

B.

Train an image clustering model using TensorFlow in a Vertex AI Workbench instance. Deploy this model to a Vertex AI endpoint and configure it for online inference. Run this model each time a new image is uploaded to identify and block inappropriate uploads.

C.

Create a dataset using manually labeled images. Ingest this dataset into AutoML. Train an image classification model and deploy it to a Vertex AI endpoint. Integrate this endpoint with the image upload process to identify and block inappropriate uploads. Monitor predictions and periodically retrain the model.

D.

Send a copy of every user-uploaded image to a Cloud Storage bucket. Configure a Cloud Run function that triggers the Cloud Vision API to detect explicit content each time a new image is uploaded. Report the classifications to the content moderation team for review.

Buy Now
Questions 81

You are an ML engineer at a manufacturing company. You need to build a model that identifies defects in products based on images of the product taken at the end of the assembly line. You want your model to preprocess the images with lower computation to quickly extract features of defects in products. Which approach should you use to build the model?

Options:

A.

Reinforcement learning

B.

Recommender system

C.

Recurrent Neural Networks (RNN)

D.

Convolutional Neural Networks (CNN)

Buy Now
Questions 82

You work for a retail company. You have a managed tabular dataset in Vertex Al that contains sales data from three different stores. The dataset includes several features such as store name and sale timestamp. You want to use the data to train a model that makes sales predictions for a new store that will open soon You need to split the data between the training, validation, and test sets What approach should you use to split the data?

Options:

A.

Use Vertex Al manual split, using the store name feature to assign one store for each set.

B.

Use Vertex Al default data split.

C.

Use Vertex Al chronological split and specify the sales timestamp feature as the time vanable.

D.

Use Vertex Al random split assigning 70% of the rows to the training set, 10% to the validation set, and 20% to the test set.

Buy Now
Questions 83

You need to build classification workflows over several structured datasets currently stored in BigQuery. Because you will be performing the classification several times, you want to complete the following steps without writing code: exploratory data analysis, feature selection, model building, training, and hyperparameter tuning and serving. What should you do?

Options:

A.

Configure AutoML Tables to perform the classification task

B.

Run a BigQuery ML task to perform logistic regression for the classification

C.

Use Al Platform Notebooks to run the classification model with pandas library

D.

Use Al Platform to run the classification model job configured for hyperparameter tuning

Buy Now
Questions 84

You are using Kubeflow Pipelines to develop an end-to-end PyTorch-based MLOps pipeline. The pipeline reads data from BigQuery,

processes the data, conducts feature engineering, model training, model evaluation, and deploys the model as a binary file to Cloud Storage. You are

writing code for several different versions of the feature engineering and model training steps, and running each new version in Vertex Al Pipelines.

Each pipeline run is taking over an hour to complete. You want to speed up the pipeline execution to reduce your development time, and you want to

avoid additional costs. What should you do?

Options:

A.

Delegate feature engineering to BigQuery and remove it from the pipeline.

B.

Add a GPU to the model training step.

C.

Enable caching in all the steps of the Kubeflow pipeline.

D.

Comment out the part of the pipeline that you are not currently updating.

Buy Now
Questions 85

You are developing a training pipeline for a new XGBoost classification model based on tabular data The data is stored in a BigQuery table You need to complete the following steps

1. Randomly split the data into training and evaluation datasets in a 65/35 ratio

2. Conduct feature engineering

3 Obtain metrics for the evaluation dataset.

4 Compare models trained in different pipeline executions

How should you execute these steps'?

Options:

A.

1 Using Vertex Al Pipelines, add a component to divide the data into training and evaluation sets, and add another component for feature engineering

2. Enable auto logging of metrics in the training component.

3 Compare pipeline runs in Vertex Al Experiments

B.

1 Using Vertex Al Pipelines, add a component to divide the data into training and evaluation sets, and add another component for feature engineering

2 Enable autologging of metrics in the training component

3 Compare models using the artifacts lineage in Vertex ML Metadata

C.

1 In BigQuery ML. use the create model statement with bocstzd_tree_classifier as the model

type and use BigQuery to handle the data splits.

2 Use a SQL view to apply feature engineering and train the model using the data in that view

3. Compare the evaluation metrics of the models by using a SQL query with the ml. training_infc statement.

D.

1 In BigQuery ML use the create model statement with boosted_tree_classifier as the model

type, and use BigQuery to handle the data splits.

2 Use ml transform to specify the feature engineering transformations, and train the model using the

data in the table

' 3. Compare the evaluation metrics of the models by using a SQL query with the ml. training_info statement.

Buy Now
Exam Name: Google Professional Machine Learning Engineer
Last Update: Nov 25, 2024
Questions: 285
Professional-Machine-Learning-Engineer pdf

Professional-Machine-Learning-Engineer PDF

$25.5  $84.99
Professional-Machine-Learning-Engineer Engine

Professional-Machine-Learning-Engineer Testing Engine

$30  $99.99
Professional-Machine-Learning-Engineer PDF + Engine

Professional-Machine-Learning-Engineer PDF + Testing Engine

$40.5  $134.99